10 research outputs found

    Measuring productivity in the new economy

    Get PDF
    The neo-classical theory of production identified only two production factors: labour and capital. Paul Romer proposed a change to the neo-classical model by introducing the technology (and implicitly knowledge on which it is based) as an inherent factor of the economic system. The Internet economy offers the possibility to develop the businesses in a totally new way by innovatively using the IT&C. This increase is highlighted by the increase of the Multifactor Productivity in the late 1990’s in the USA economy.productivity, neo-classical theory, internet economy, economic system

    A new economy?

    Get PDF
    Along human history there were periods in which advanced technology and changes in business management generated both social and economic upheavals. These events do not only bring forth an increase of productivity in a leading economic sector but they also offer solid instruments for all social-economic sectors, producing such major transformations so that we can speak about an economic revolution or the emergence of “a new economy”. Nowadays we are the witnesses of a transition period towards “a new economy” often called “Knowledge Economy”.new economy, productivity, knowledge economy, information economy

    >

    No full text

    Effects of Laser Irradiation at 488, 514, 532, 552, 660, and 785 nm on the Aqueous Extracts of Plantago lanceolata L.: A Comparison on Chemical Content, Antioxidant Activity and Caco-2 Viability

    No full text
    In this study, six laser radiation (488 nm/40 mW, 514 nm/15 mW, 532 nm/20 mW, 552 nm/15 mW, 660 nm/75 mW, and at 785 nm/70 mW) were tested on the aqueous extracts of leaves of Plantago lanceolata L. to compare extraction efficacy and antioxidant and cell viability effects in vitro. Briefly, in comparison with the control extract, laser extracts at 488, 514, 532, and 552 nm revealed small acquisitions of total extractible compounds in samples (up to 6.52%; laser extracts at 488 and 532 nm also revealed minerals and micro-elements increases (up to 6.49%); the most prominent results were obtained upon Fe (up to 38%, 488 nm), Cr (up to 307%, 660 nm), and Zn (up to 465%, 532 nm). Laser extracts at 488, 514, 552, and 785 nm proved more intense antioxidant capacity than the control sample, while laser extract at 660 nm indicated clear pro-oxidant effects. Caco-2 cells study indicated stimulatory activity for the extracts at 488 nm, no effects at 532 nm, and the decrease of the cell viability in the case of extracts at 660 nm respectively. Further studies are necessary to understand the pro-oxidant effects observed in the case of extracts exposed to laser radiation at 660 nm

    Effects of Laser Irradiation at 488, 514, 532, 552, 660, and 785 nm on the Aqueous Extracts of <i>Plantago lanceolata</i> L.: A Comparison on Chemical Content, Antioxidant Activity and Caco-2 Viability

    No full text
    In this study, six laser radiation (488 nm/40 mW, 514 nm/15 mW, 532 nm/20 mW, 552 nm/15 mW, 660 nm/75 mW, and at 785 nm/70 mW) were tested on the aqueous extracts of leaves of Plantago lanceolata L. to compare extraction efficacy and antioxidant and cell viability effects in vitro. Briefly, in comparison with the control extract, laser extracts at 488, 514, 532, and 552 nm revealed small acquisitions of total extractible compounds in samples (up to 6.52%; laser extracts at 488 and 532 nm also revealed minerals and micro-elements increases (up to 6.49%); the most prominent results were obtained upon Fe (up to 38%, 488 nm), Cr (up to 307%, 660 nm), and Zn (up to 465%, 532 nm). Laser extracts at 488, 514, 552, and 785 nm proved more intense antioxidant capacity than the control sample, while laser extract at 660 nm indicated clear pro-oxidant effects. Caco-2 cells study indicated stimulatory activity for the extracts at 488 nm, no effects at 532 nm, and the decrease of the cell viability in the case of extracts at 660 nm respectively. Further studies are necessary to understand the pro-oxidant effects observed in the case of extracts exposed to laser radiation at 660 nm

    The electron beam and pinch effect characteristics of double discharge pulsed electron beam generator

    No full text
    The double discharge pulsed electron beam generator (DDPEBG) is a device that generates an intense filamentary electron beam by superposing two discharges namely a low pressure dc glow discharge and a high current pulsed discharge. The characteristics of this electron beam are: small beam diameter (8 μm), high peak current (20 A), and short pulse length (30 ns). The filling gas is helium, argon or nitrogen at approximately 0.1 Torr pressure, and the discharge chamber does not require a high vacuum system. The absence of a high vacuum system and the capability to generate ultra short, intense electron beams are the major advantages of this device and, might be useful in many applications. In this work, further results on operating characteristics of the DDPEBG, such as pinch effects and electron density measurements are given. The beam diameter is measured experimentally by utilizing the interaction of a single pulse with diffrent metal foils targets. These foils are then examined by a scanning electron microscope (SEM) and the measured diameters are compared with the beam diameter values resulted from the pinch effect calculations of the filamentary discharge. The electron density is determined from the beam diameter and current intensity

    Journal of Law and Administrative Sciences No. 3/2015

    No full text
    corecore